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We present some long time limit properties of a cellular automaton that models

traffic of cars on a (infinite) two-lane road. This model, called TL184, is a

natural generalization of the cellular automaton classified as 184 by Wolfram

(to be abbreviated by CA184) and studied before as a model for one-lane traffic.

TL184 models cars’ motions on each lane by particles that interact via the

CA184 rules, and cars’ lane changes by a possibility for particles to flip from

one CA184 to another. We calculate the infinite-time limit of the particle

current in TL184, starting from a translation invariant measure, and use this

result to show how the possibility of lane changes may enhance the current of

cars in TL184 compared to that in a corresponding model of two non-interact-

ing one-lane roads. We provide examples which demonstrate that even though

the rules that regulate lane changes are completely symmetric, the system does

not evolve to an equipartition of cars among both lanes from a given initially

asymmetric distribution; moreover, the asymptotic car velocities and currents

may be different on different lanes. We also show that, for a particular class of

initial distributions, the asymptotic car density on a lane may be a non-mono-

tonic function of the initial car density on this lane. Finally, we derive the

current-density relation for an extended continuous-time version of TL184 with

asymmetric lane-changing rules.
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1. INTRODUCTION

Traffic flow phenomena have attracted considerable interest in recent

years (see, for instance [Wo], [SW], [CSS] and [HH] and references

therein), both from the applied and theoretical points of view. The main

goal in a mathematical study of traffic flow is usually to understand how

macroscopic phenomena, like the current-density relation (the flow

diagram in traffic engineering language) or traffic jams, emerge from the

microscopic laws governing the local interaction among the individual

components, i.e., the cars. In this sense, the elementary cellular automaton

that has the number 184 in Wolfram’s classification ([W]) is one of the

most simple models of single-lane traffic, exhibiting basic empiric proper-

ties of traffic flow such as a single maximum in the current-density relation

or the occurrence of stable shocks (traffic jams) in the presence of obstacles

([BML], [TE], [NH], [DE], [ERS]). In the present paper, we study a

two-lane traffic model constructed on the basis of this cellular automaton.

The two lanes—which are each represented by a cellular automaton 184

—interact through the possibility of lane changes. We show that this model

exhibits some non-trivial and quite interesting properties. Due to its

simplicity, this model is amenable to rigorous analytical analysis, which is

usually more difficult in other two-lane traffic models suggested in the

literature that try to identify the simplest ‘‘realistic’’ models (see [CWS],

[NWWS], [NWW], [Na1], [Na2], [RNSL]).

The cellular automaton 184 (abbreviated by CA184) models a one-lane

road by Z, and cars on this road by identical particles. These particles

occupy the sites of Z under the constraint that there may be at most one

particle per site. Their discrete-time update is synchronous (all particles try

to move simultaneously) with the evolution rule that at each time step each

particle tries to jump one position to the right, but succeeds only if that

position was empty. Denote a configuration of particles in CA184 at time

n ¥ N by zn ¥ {0, 1}Z with zn(i)=1 (zn(i)=0) indicating the presence

(absence) of a particle at the site i at time n. The formal definition of the

particle dynamics in CA184 may be given by the equation:

zn+1(i)=zn(i−1)(1−zn(i))+zn(i) zn(i+1), for all i ¥ Z, and all n ¥ N.

The two-lane traffic model constructed and studied here will be called

Two-Lane 184 and abbreviated by TL184. In this model, the two lane road

is represented by the collection of sites G — {(i, j), i ¥ Z, j ¥ {1, 2}}. We call

G1 — {(i, 1), i ¥ Z} lane 1 or the upper lane and G2 — {(i, 2), i ¥ Z} lane 2 or
the lower lane. We say that site (i, j) corresponds to position i on lane j. In
TL184, each site of G can be occupied by at most one particle, correspond-
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ing to the presence of a car at that site on the ‘‘road’’. Let us denote a con-

figuration of TL184 at time n ¥ N by gn ¥ G :={0, 1}G with gn(i, j)=1
(gn(i, j)=0) indicating the presence (absence) of a particle at position i of
lane j (i.e., the site (i, j)) at time n. The time evolution of the particles

generalizes that of CA184 as follows: If a site (i, j) is occupied by a particle

at time n ¥ N then at time n+1, this particle may be either at (i+1, j), or at
(i+1, j −), j − ] j, or at (i, j). The choice among these three possibilities is

determined as follows. First the particle tries to jump to position (i+1, j)
(as in CA184) and succeeds if and only if that position was vacant, that is,

if gn(i+1, j)=0. If this jump is forbidden, it tries to change lanes and to

occupy the site (i+1, jŒ) where jŒ ] j. The change of lane will occur provi-

ded that the target site is vacant and there is no particle at site (i, jŒ) about
to jump to it, i.e., the lane change occurs if and only if gn(i+1, j)=1 and

gn(i+1, jŒ)=gn(i, jŒ)=0. Finally, if both moves (ahead and lane-change) are

not allowed, the particle stays where it is. Denoting by P ( p ) an occupied

(empty) site, a lane change from the upper to the lower lane may be illu-

strated by the following diagram

1
P P

p p 2
Q1
pa

aP2
(1)

where the a’s can be either p or P depending on the environment; a lane

change from the lower to the upper lane may be similarly illustrated. A

complete graphical presentation of the dynamical rules is given below in

the column ‘‘TL184’’ of Table 1. A more formal definition of TL184 may

be given by an operator T : {0, 1}GQ {0, 1}G such that gn+1 :=T(gn). The
explicit expression of T is given in Section 2, Eq. (18), where it is needed.

Notice that for any time n ¥ N and any i ¥ Z, gn+1(i, 1) and gn+1(i, 2)
depend solely on {gn(k, l), k=i−1, i, i+1, l=1, 2}.

TL184 has been constructed as a system consisting of two CA184 that

interact through the possibility of lane changes. For the purpose of com-

parison, let us denote by DCA184 the system of two non-interacting

CA184 where each particle can only move (or try to) on its lane and does

so according to the CA184 evolution rules. Formally, DCA184 is a discrete-

time process gn, n ¥ N, with the state space {0, 1}G whose evolution is given

by gn+1(i, j)=gn(i−1, j)(1−gn(i, j))+gn(i, j) gn(i+1, j), for all i ¥ Z, n ¥ N,

j=1, 2.
The two models considered here, DCA184 and TL184, exhibit a par-

ticle-vacancy symmetry inherited from CA184. Informally this symmetry,

that will be used many times below, means that both models can be defined

by setting up either the rules that describe how particles move to the right

or the rules that describe how vacancies move to the left, and those rules
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Table 1. The Column Entitled ‘‘3-State’’ Presents the Dynamics (16) of the 3-State

Cellular Automaton. It Has the Pattern (t(i−1), t(i), t(i+1))QS(t)(i). The Column

Entitled ‘‘TL184’’ Presents the Dynamics of TL184 in the Form (gn(i−1), gn(i), gn(i+1))

Q gn+1(i). Configurations of TL184 Which Are Equivalent up to an Interchange of

Lanes Are Not Listed Separately. The Configurations of the 3-State Cellular Auto-

maton and Those of TL184 Are Matched to Simplify Checking (17). Namely, Each 3-

State Configuration Is the Result of the Application of M to the TL184 State in the

Same Line of the Table

3-state TL184 3-state TL184

(000)Q0
p p p

p p p
Q
p

p
(111)Q 1

P P P

p p p
Q
p

P

P P p

p p P
Q
p

P

(001)Q0
p p P

p p p
Q
p

p

p P P

P p p
Q
p

P

P p P

p P p
Q
P

p

(002)Q0
p p P

p p P
Q
p

p
(011)Q 0

p P P

p p p
Q
p

p

p P p

p p P
Q
p

p

(010)Q0
p P p

p p p
Q
p

p
(101)Q 1

P p P

p p p
Q
P

p

P p p

p p P
Q
P

p

(012)Q1
p P P

p p P
Q
P

p
(110)Q 1

P P p

p p p
Q
p

P

P p p

p P p
Q
P

p

(020)Q0
p P p

p P p
Q
p

p
(112)Q 2

P P P

p p P
Q
P

P

P p P

p P P
Q
P

P

(021)Q1
p P P

p P p
Q
P

p
(121)Q 1

P P P

p P p
Q
P

p

P P p

p P P
Q
p

P

(022)Q2
p P P

p P P
Q
P

P
(211)Q 1

P P P

P p p
Q
p

P

P P p

P p P
Q
p

P

(100)Q1
P p p

p p p
Q
P

p
(202)Q 2

P p P

P p P
Q
P

P

(102)Q1
P p P

p p P
Q
P

p
(210)Q 1

P P p

P p p
Q
p

P

(120)Q0
P P p

p P p
Q
p

p
(212)Q 2

P P P

P p P
Q
P

P

(122)Q2
P P P

p P P
Q
P

P
(220)Q 0

P P p

P P p
Q
p

p

(200)Q2
P p p

P p p
Q
P

P
(221)Q 1

P P P

P P p
Q
P

p

(201)Q2
P p P

P p p
Q
P

P
(222)Q 2

P P P

P P P
Q
P

P
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will be essentially the same. More precisely, if R: {0, 1}GQ {0, 1}G is the

reflection operator defined by (R(g))(i, j)=g(−i, j), i ¥ Z, j=1, 2, and

E: {0, 1}GQ {0, 1}G is the vacancy/particle exchange operator defined by

(E(g))(i, j)=1−g(i, j), i ¥ Z, j=1, 2, then the equivalence of the rules as

stated above is a consequence of the following commutation relation

T(R(E(g)))=R(E(T(g))), -g ¥ {0, 1}G (2)

which is straightforward to verify by applying the evolution rules (18) of

TL184.

Let us review our results. They concern the infinite-time-limit of

certain characteristics of TL184 (the particle current, density and velocity,

both in the system as a whole, and on each separate lane) which will be

alternatively called ‘‘asymptotic’’, or ‘‘limiting’’, or ‘‘stationary’’.

In Theorem 1, we show that when TL184 starts from a translation

invariant measure m, then the infinite-time limit of the particle current is

the sum of analogous limits in two non-interacting (!) CA184, starting on

each lane from particular measures n1 and n2. The construction of n1, n2
from m will be given explicitly in (6). We note that Theorem 1 allows one to

express the asymptotic particle current as a function of the parameters of

the initial (!) distribution of particles in TL184. This fact is stressed in

Corollary 1 that states that this current is min{r1+r2, 2−r1−r2}, when
TL184 starts from the Bernoulli measure with the particle density ri on

lane i, i=1, 2. This initial measure is also studied in Corollary 2. There we

show that the asymptotic current in TL184 may be larger than that in

DCA184, when both start from the same measure, and when either

r1 < 1/2 < r2 or r2 < 1/2 < r1. This current enhancement in TL184 is a

consequence of lane changes, and thus it suggests that TL184 be a mean-

ingful model of two-lane traffic. [Let us note that it is not difficult to

construct some specifically chosen initial configurations of particles on G,
such that at a given time n the current in TL184 is larger than that in

DCA184. However, this fact does not diminish the significance of

Corollary 2, since it applies to the case when the initial measure is ‘‘suffi-

ciently disordered’’: it is Bernoulli with different particle densities on the

lanes.]

At the heart of the proof of Theorem 1 there is a coupling of TL184,

starting from m, with DCA184, starting from another measure n, in such a

way that their particle currents are equal at all times (n1 and n2 mentioned

above are the particle distributions on lanes 1 and 2 in the measure n).

Since the particle densities in n1 and in n2 are equal, this coupling may leave

the impression that particles in TL184 manage to rearrange themselves
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equally on both lanes, as time increases. This, however, does not happen in

general, as Theorem 2 indicates. It shows that the stationary particle

density on lane 1 is different from that on lane 2, when, initially, the

measure on lane 1 is Bernoulli while the other lane is entirely empty (or

entirely occupied, which follows from particle-vacancy symmetry). The

initial measure considered in Theorem 2 satisfies the assumptions of

Corollary 1, but there is no contradiction between these statements since

the fact that the limiting current depends solely on r1+r2 (as Corollary 1

asserts) does not necessarily require that (r1+r2)/2 is the limiting particle

density on each lane. Theorem 2 and Remark 2 also show that the long

time limit of the particle current and the long time limit of the particle

velocity may be different on different lanes. That these notions actually

make sense is established by our Proposition 1. It asserts that each particle

of TL184, starting from a product measure, will change lanes only a finite

number of times and thus, will settle sooner or later on one of the lanes.

The main ingredient in the proof of Theorem 2 is an analysis of the

dispersion (as time increases) of particles that form a block on a lane in the

initial state of TL184 (see Figure 2). This analysis is complete, when those

sites on the other lane which are neighbors to the particles from a block,

are all vacant, the condition reflected in the theorem assumptions. The

control we have on the block dispersion mechanism allows us to reveal one

more intriguing property of TL184: the stationary particle density on a lane

may be a non-monotone function of the initial particle density on the same

lane. Namely, we construct a specific measure by leaving lane 1 empty and

putting particles on lane 2 with the measure n184r , which is the stationary

distribution of CA184, starting from the Bernoulli measure with the par-

ticle density r. We then show (Theorem 3) that for such initial measures the

stationary particle densities on each lane of TL184 are both strictly smaller

than 1/2, if the initial density r on the non-empty lane is different from 1/2
and 1. This result implies that the limiting particle density on lane 2 is a

non-monotonic function of r (see Corollary 3 and Figure 3). Note that the

constructed initial measure relates to the real situation when the cars are

allowed to change lanes only after they have achieved a steady state on one

lane (e.g. when a one-lane road widens up to two lanes). This relation and

Theorem 3 and Corollary 3 motivated us to investigate whether a measure

of the form n184r1 ×n
184
r2

might be invariant for TL184; in this measure the

lanes are independent and the particles on lane i are distributed by n184ri ,

i=1, 2. In Proposition 2 we show that n184r1 ×n
184
r2

is not invariant, when

r1 < 1/2 < r2. In the proof, we adapted the method that had allowed us

to characterize the invariant measures of CA184 ([BF2]). We believe that a

further development of this method may lead to an analogous charac-

terization for TL184.
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We remark that less restrictive conditions on the initial measures may

lead to results similar to Theorems 2 and 3. How far these results can be

pushed remains an open question.

The last section (Section 4) discusses some questions associated with a

continuous time version of TL184. The current enhancement due to lane

change observed in Section 2 is reconsidered in this version of the model.

In particular, we introduce an asymmetric lane-changing rule which

requires cars to return to ‘‘lane 2’’ immediately after passing (assuming

this to be possible). This rule is motivated by traffic regulations in some

countries (e.g. Germany) which aim at keeping one lane (lane 1 in our

notation) free for passing by faster vehicles.

2. THE LONG TIME LIMIT OF THE PARTICLE CURRENT IN TL184

In this section we prove that the long time limit of the particle current

for TL184 exists and we compute its value (Theorem 1 and Corollary 1).

We then compare this limiting current to that in the process consisting of

two independent single-lane models, DCA184, starting from the same

distribution (Corollary 2).

Let Nn
(0, 1)(g) denote the number of particles that hop from position

(resp., site) 0 to position (resp., site) 1 in G (resp., Z) at time n in TL184 or

in DCA184 (resp., CA184) that starts from the configuration g4. For a

4 We remind the reader that by referring to a position in G without specification of the lane we

have in mind both sites (i, 1), (i, 2) at position i. Hence Nn
(0, 1)(g) may take the values 0,1 or 2

respectively.

translation invariant measure m, we call

Jg
t=n(m) :=EmN

n
(0, 1)(g) (3)

the particle current at time n for the initial measure m. Here and in (4) below,

* indicates the process we are considering, and thus, may be either TL184

or DCA184 or CA184. Correspondingly

Jg
t=.(m) :=lim

nQ.
Jg
t=n(m) (4)

is called the long time limit of the particle current (or stationary current) for
the initial measure m. If m is invariant we use Jg(m) :=Jg

t=n(m).
Theorem 1 will express JTL184

t=. (m) with the help of an auxiliary measure

n. We now present the construction of n from m.

Let us say that we have an isolated particle in configuration g at site

(i, j) ¥ G, if the corresponding site on the other lane is empty (that is,
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g(i, j)=1 and g(i, jŒ)=0, for jŒ ] j). Then we define S as the set of con-

figurations on which all consecutive isolated particles are in different lanes

(in between two consecutive isolated particles there may be positions that

are empty or occupied by two particles).

With an arbitrary translation invariant measure m on G={0, 1}G we

now associate a translation invariant measure n which is supported by S.

Our construction of n from m may be informally described as follows. It

does not modify non-isolated particles and non-isolated vacancies. It takes

the particle of m which is the nearest to the position 0 from the right among

all isolated particles, and distributes it equally among the lanes. Given the

lane occupied by this particle, all other isolated particles of m are put by n

in the alternating order on the lanes, so that each configuration from the

support of n is from S, as desired. Let us now present a formal construc-

tion of n. Let M:{0, 1}GQ {0, 1, 2}Z be ‘‘the particle counting operator’’

defined by

M(g)(i) :=g(i, 1)+g(i, 2), g ¥ {0, 1}G (5)

Given g ¥ G, we define two configurations L1(g) and L2(g) by postulating

that (a) both belong to S; (b) their total occupation numbers coincide

with those of g: M(g)=M(L1(g))=M(L2(g)); (c) the configuration L1(g)
(L2(g)) has the first isolated particle to the right of the origin in lane 1 (2).
A formal construction of n is provided via its definition on cylinder subsets

of S:

n(A) :=1
2 C
i=1, 2
m{g ¥ G : z=L i(g) for some z ¥ A}, - cylinder A …S(6)

To state and to prove Theorem 1, we shall need certain facts on the

asymptotic particle current behavior in CA184. Let us recall from [BF2]5

5 Certain ideas employed in [BF2] have already appeared in the literature; see for example,

[BF1], [KS], [NH], [BML].

what is known in this context (more details are given in Note added 2).

In [BF2], we prove that if l is a translation invariant measure on

{0, 1}Z, then CA184, starting from l, converges to a measure, which we

denote by l., that is also translation invariant. This convergence implies,

in particular, that JCA184
t=. (l) exists since it is just JCA184(l.). An important

fact, however, is that we can express its value without knowing l..

Namely, let us represent l as

l=ac+(1−a) s (7)

952 Belitsky et al.



for some a ¥ [0, 1] and some translation invariant measures c and s that

satisfy

for c-almost every configuration z ¥ {0, 1}Z, if z(0)=1

then C
n(z)

k=0
(1−2z(k))=0 for some finite positive n(z); (8)

for s-almost every configuration z ¥ {0, 1}Z, if z(0)=0

then C
n(z)

k=0
(1−2z(k))=0 for some finite positive n(z) (9)

Then,

JCA184
t=. (l)=ar(c)+(1−a)(1−r(s)) (10)

where r(l) :=Pl[z(0)=1] is the particle density of the measure l.

Note that there always exists a unique expansion

l=C
i
aib

> 1/2
i +C

j
bjb

< 1/2
j +C

k
ckb

=1/2
k (11)

where a’s, b’s and c’s are positive reals summing up to 1, and each b is an

ergodic translation invariant measure on {0, 1}Z whose particle density is

> 1/2, or < 1/2, or =1/2, as indicated in the superscript. Because of the

ergodicity, any b > 1/2 satisfies (8), any b < 1/2 satisfies (9), and any b=1/2

satisfies both. Thus, the expansion (7) is always possible since it may con-

structed from (11); it may be not unique, since b=1/2 can be incorporated in

ether c or in s, but this non-uniqueness does not affect the value of (10),

because r(b=1/2)=1−r(b=1/2).
We can now state the central result of the present section.

Theorem 1 (The particle current in TL184 in the long time

limit). Let m be a translation invariant measure on G, let n be constructed

from m via (6) and let ni denote the distribution of the particles on the i-th
lane (i=1, 2) in n. Then JTL184

t=. (m), the long time limit of the particle current

in TL184, starting from m, exists and is given by

JTL184
t=. (m)=JCA184

t=. (n1)+JCA184
t=. (n2). (12)

Its numeric value may be found by calculating JCA184
t=. (ni), i=1, 2, following

(7–10).
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Corollary 1 (A case when the limiting current is a function of the

initial particle densities). If m is a measure on G that puts particles inde-

pendently on G with the density ri on the i-the lane, i=1, 2 (that is,

r1=Pm[g(i, 1)=1] and r2=Pm[g(i, 2)=1]), then

JTL184
t=. (m)=min{r1+r2, 2−r1−r2}. (13)

Theorem 1 states that if m is translation invariant then JTL184
t=. (m) exists

and its value may be calculated in two steps: firstly, one constructs n from

m; secondly, for i=1, 2, one finds the expansion (7) for ni and uses it to

express JCA184
t=. (ni) via (10). Plugging JCA184

t=. (ni), i=1, 2, in (12) gives the

result. Corollary 1 presents a particular case for which both steps are dis-

pensable. This case is of particular interest because it allows us to exhibit

the following property of TL184.

Corollary 2 (Current enhancement due to lane changes in

TL184). Let m be as in Corollary 1. Then

JTL184
t=. (m)−JDCA184

t=. (m)=min{r1+r2 , 2−r1−r2}

−min{r1, 1−r1}−min{r2, 1−r2}3
> 0 if r1 <

1
2< r2 or r2 <

1
2< r1

=0 otherwise

Proof of Corollary 1. The structure of m and the construction of n

from m imply that n puts particles independently on the sites of G, with the

density (r1+r2)/2 on both lanes; in other words, ni, i=1, 2, is Bernoulli

with the particle density equal to (r1+r2)/2. Thus, if (r1+r2)/2 [ 1/2
then both n1 and n2 satisfy (8), while if (r1+r2)/2 \ 1/2 then both satisfy

(9). From (7)–(8)–(9)–(10), we then have that

JCA184
t=. (n1)=JCA184

t=. (n2)=min{(r1+r2)/2 , 1−(r1+r2)/2}, (14)

which together with (12) imply (13). L

Proof of Corollary 2. Let mi denote the distribution of particles in

the i-th lane (i=1, 2) in m. Employing the fact that both are Bernoulli and

reasoning as in the proof of Corollary 1, we get that JCA184
t=. (mi)=
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min{ri, 1−ri}, i=1, 2. Now, since, by the very definition of DCA184, the

particles do not change lanes in this process then

JDCA184
t=. (m)=JCA184

t=. (m1)+JCA184
t=. (m2)

=min{r1, 1−r1}+min{r2, 1−r2}
(15)

Combining this with (13) proves the corollary. L

Proof of Theorem 1. The proof goes as follows. First we show that

starting from any configuration from S, the evolution under the TL184

rules never has lane-changes and therefore is exactly the same as if the

evolution on both lanes were independent, that is, as if the dynamics were

that of DCA184. Next we define a map of the two-lane model into an

auxiliary one-dimensional 3-state cellular automaton that preserves all the

information necessary to compute currents. Finally, we construct a

measure m concentrated on a subspace of G×S such that its first (resp.,

second) marginal is m (resp., n from (6)) and such that if (g, gŒ) belongs to
the support of m then both g and g − are mapped to the same 3-state con-

figuration. The existence of this measure m, the preservation property of

the 3-state cellular automaton and the property of S as stated above,

ensure that the current in TL184, starting from m, is the same (at each time)

as the current in DCA184, starting from n. The long time limit of the latter

exists and is expressed by the r.h.s. of (12) due to the relation of DCA184

to CA184. This would prove the theorem.

The first step of the proof is the claim that particles of TL184 never

change lanes, when starting from a configuration from the set S (defined

in the beginning of this section). This will be proven once we have verified

that S is closed under TL184 evolution and that, from any configuration

in this set, a single time step never involves lane-changes.

To simplify the exposition, we say that each isolated particle (defined

in the beginning of the section) in a given configuration receives one of two

opposite labels: up or down, according to its position in lane 1 or 2, respec-
tively, and that each particle in a doubly occupied position receives no

label. We also say that a non-isolated particle has a companion, namely, the

particle at the same position on the other lane. Then, S … G is the set of

configurations in which all consecutive isolated particles have different

labels. Let g0 be a configuration in S and g1 the next configuration under

the evolution of TL184. We use now Table 1 to check the following three

facts concerning the associated ‘‘label dynamics’’ that, taken together,

imply the claim about the evolution of TL184 on S.
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(1) A particle, call it A, that is isolated in g0 and able to move will no

longer be isolated in g1 only if in g1 it is at the same site with a particle, call

it B, that had the opposite label in g0. Notice that in this case the labels of

A and B are on successive positions. Thus, labels can only disappear in

pairs, with the ‘‘annihilation’’ of two successive labels of opposite types.

Moreover, when a particle looses its label it does not change lanes.

(2) A particle, call it C, that is isolated in g0 and unable to move will

no longer be isolated in g1 only if it is now at the same site with a particle,

call it D, that moved into that site.

(2a) If D was isolated then this situation has been analyzed in (1)

with A and B playing the roles of D and B respectively. In this case, we

have an annihilation of two successive labels and none of the considered

particles changes lanes.

(2b) If, on the contrary, D was not isolated in g0 then its companion

in g0, call it E, had no label in g0 but ‘‘inherits’’ the label of C in the origi-

nal isolated particle in g0. Thus, in this situation we observe a label moving

backwards by 1 and none of the considered particles changes lanes.

(3) A particle, call it A, that is not isolated in g0 will be isolated in g1,

and therefore labeled, in two situations.

(3a) It moves while its companion in g0, call it B, does not move and

the particle, call it C, that blocked the particle B, moves as well. Notice

that in this situation C must be labeled in g0. Suppose its label is ‘‘up’’; the

opposite case admits similar analysis. Since g0 ¥S, the nearest label to the

left of A and B in g0 is ‘‘down’’. Thus, the labels of A and B appear in the

correct order in between two already existing labels. Certainly, any of them

may be annihilated in g1. But these potential annihilation events do not

change the alternating order of labels, as we have shown in (1) and (2).

Notice that neither A nor B change lanes in this situation.

(3b) The second possibility is that A acquires a label because it does

not move and its companion in g0, call it B, moves. This situation becomes

identical to the one considered in (3a), if one interchanges the names of A

and B. Thus, this situation neither leads to the break up of the alternating

order of labels nor to lane changes.

In the second step of the proof we construct an auxiliary 3-state

cellular automaton in Z that only keeps track of how many cars there are

on each position6. In this mapping to each position i in G is assigned a site

6 This automaton is a special case of the Burgers CA introduced in [NT1].
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i in {0, 1, 2}Z. If gn, n ¥ N, is a TL184 configuration we use M from (5) to

define tn ¥ {0, 1, 2}Z as

tn :=M(gn).

The TL184 evolution rule induces a cellular automaton on the 3-state con-

figuration space which may be defined by an operator S on {0, 1, 2}Z with

tn+1=S(tn) as follows

S(tn)(i) — tn(i)−min{tn(i), 2−tn(i+1)}+min{tn(i−1), 2−tn(i)}. (16)

This follows once we have verified that

S(M(gn))=M(T(gn)) (17)

either by inspection of the relation of TL184 to the 3-state cellular auto-

maton presented in Table 1 or directly using the definitions of S, M given

above and the explicit expression for T given by:

T(g)(i, j)=g(i, j)g(i+1, j)[g(i+1, j)+g(i+1, jŒ)−g(i+1, j)g(i+1, jŒ)]

(1−g(i−1, j))(1−g(i, j))g(i−1, jŒ)g(i, jŒ)

g(i−1, j)(1−g(i, j)) (18)

for all (i, j) ¥ G, with j ] j −.
We note that no information pertaining to the particle current in

TL184 is lost in its mapping into the 3-state cellular automaton, because of

the relation

Nn
(0, 1)(g)=min{M(gn(0)), 2−M(gn(1))} (19)

where Nn
(0, 1), defined at the beginning of this section, denotes the number of

particles that hop from position 0 to position 1 in G at time n in TL184,

starting from g.

In the final step of the proof we construct a measure m supported by

the set {(g, z) : z=L1(g)) or z=L2(g)} … G×S (recall that L1 and L2 have
been defined in the beginning of this section) by setting

m{(g, L1(g)) : g ¥ A}=m{(g, L2(g)) : g ¥ A} :=1
2 m(A), - cylinder A ı G

(20)

For any pair (g, z) from the support of m, it is true that Nn
(0, 1)(g)=Nn

(0, 1)(z),
since M(g)=M(z) and because of (19). Notice also that, by our construc-
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tion (20), the first (resp., second) marginal of m is m (resp., n from (6)).

Thus,

JTL184
t=n (m)=JTL184

t=n (n), -n. (21)

But we have shown that the particles in TL184, starting from a configura-

tion from S, never change lanes. Thus,

JTL184
t=n (n)=JDCA184

t=n (n)=JCA184
t=n (n1)+JCA184

t=n (n2), -n (22)

The relation (12) follows from (21) and (22), since JCA184
t=. (ni), i=1, 2, exists,

as it has been proved in [BF2] (and reviewed at the beginning of this

section and in Note added 2). The actual values of JCA184
t=. (ni), i=1, 2, may

be calculated following (7)–(8)–(9)–(10). Plugging them in (12) provides the

value of JTL184
t=. (m). L

3. THE LANE ASYMMETRY AND RELATED PHENOMENA

As a consequence of (12) (established in Theorem 1) and of the fact

that r(n1)=r(n2) (which follows from (6) and the translation invariance of

m), we can state that with respect to the total current the TL184 model is

equivalent to two CA184 with equipartition of particles among both lanes.

In this section we investigate the long-time limit behavior of TL184 and

show (Theorem 2) that this equipartition in fact does not occur from

natural asymmetric translationally invariant initial measures like product

measures and that stationary velocities and currents may differ in both

lanes. Of course there is no contradiction here. The point is that the value

of the current does not give much information about how the particles are

distributed among the two lanes.

Considering velocity and current for each individual lane makes sense

since we show (Proposition 1) that from an initial product measure, with

probability one each particle changes lanes only a finite number of times

and therefore its evolution eventually settles down to that of the one-lane

version. Natural candidates for invariant measures for TL184 are those on

which particles are placed in each lane according to an invariant measure

for CA184. But, as we verify in Proposition 2, these measures are not

always invariant. In Theorem 3 we discuss the evolution of TL184 starting

from this kind of non-invariant measures in the case where only one lane is

initially occupied and find (Corollary 3) an interesting lack of mono-

tonicity.

We consider basically three classes of measures as initial measures for

TL184. The simplest translationally invariant initial measures are product

measures with different densities on both lanes. Denote by mr1, r2 the
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product measure with density 0 [ r1 [ 1 on the upper lane and 0 [ r2 [ 1
on the lower lane and by M the class of all those measures.

Another interesting class of measures will be denoted by M184. Its

generic element, denoted by n184r1 ×n
184
r2
, places particles on the upper and

lower lane according to independent measures, n184r1 , with density r1, and

n184r2 , with density r2, respectively, where n
184
r ¥ I184 denotes the invariant

measure for CA184, starting from the Bernoulli measure with the density r.

The structure of n184r has been analyzed [BF2] (see Note added 2 at the

end). The result is that it is translation invariant, and if r \ 1/2 then it does

not allow any two neighboring sites be vacant, i.e., n184r is supported by

configurations consisting of blocks of particles separated by single vacant

sites. The Bernoulli structure of the initial distribution then guarantees that

the density of blocks with an even number of particles is strictly between 0
and 1, in n184r . This particular property is essential for the proof of Theorem

3. If r [ 1/2 then n184r looks like n1841−r in which particles and vacancies are

interchanged.

Finally, another interesting class of measures consist of those obtained

by taking the limit pQ1 in the stationary measures of the stochastic

variant of CA184 where particle hop with probability p if they can ([Y],

[SSNI]). We shall denote this class of measures by I184
1 .

To investigate the effect of lane changes on the stationary densities on

both lanes for TL184 we first consider the case where the initial measure is

mr, 0, that is, no particle is on lane 2 and particles on lane 1 are placed

according to a Bernoulli measure with density r.

When g0 from TL184 is chosen according to a translationally invariant

measure m then the quantities

Pm[gn(i, j)=1, gn(i+1, j)=0], Pm[gn(i+1, j)=0 | gn(i, j)=1]
(23)

do not depend on i ¥ Z, and are called the current of particles and the par-
ticle velocity on the lane j at time n. Their long time limits are defined as

limnQ. of the respective quantities and denoted, respectively, by Jm(j) and
vm(j). That these quantities actually exist and make physical sense is the

content of

Proposition 1. Let the initial measure for the TL184 be either mr, 0,

or mr, 1, or m0, r, or m1, r from M for some r ¥ [0, 1]. Then, with probability

one, each particle changes lane finitely many times.

We postpone the proof of Proposition 1 because it rests on the tech-

nique that we shall develop to prove the following theorem. It shows that
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the stationary densities, velocities and currents may be different on both

lanes.

Theorem 2 (Lane asymmetry from Bernoulli measures). Let

mr, 0 ¥M, for some r ¥ (0, 1), be the initial measure for TL184. Then

a) r+ :=limnQ.Emr, 0gn(i, 1) ] limnQ.Emr, 0gn(i, 2)=:r−

b) vmr, 0(1)=vmr, 0(2)=1
c) Jmr, 0(1)=r

+ and Jmr, 0(2)=r
−

Remark 1. The actual values for these limit densities are (Figure 1)

r+=
r

1+r
and r−=

r2

1+r
.

Remark 2. By the lane exchange and particle-vacancy symmetries

(2) the corresponding results for m0, r, mr, 1 and m1, r follow. In particular, for

mr, 1 the stationary velocities in both lanes will be different.

Proof of Theorem 2. Let us call a configuration g a free configura-
tion if all particles are able to move. This property is preserved by the

dynamics of TL184: if the configuration of the TL184 at time n, gn, is free
then gn+1 will also be free. Indeed, let g̃(i)=g(i, 1)+g(i+1, 1)+

Fig. 1. The x-axis corresponds to r, the density of particles on lane one in the measure

mr, 0 ¥M. We show r+, the long time limit of the particle density on lane one in TL184 that

starts from mr, 0 (full curve) and the value of r+ one would obtain if an equipartition of par-

ticles would take place (dotted curve).
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g(i, 2)+g(i+1, 2) be the total number of particles at the four sites on posi-

tions i and i+1 in configuration g. It is straightforward to check that a

configuration g is free if and only if g̃(i) [ 2 for all i ¥ N. Using this and

noticing that g̃n(i−1)=g̃n+1(i) if gn is free it follows that the dynamics pre-

serves this property.

All configurations in the support of mr, 0 have particles only on lane 1,
and therefore are free. On this lane one has blocks of nearest neighbor

particles separated by empty sites. As the configuration is free, the evolu-

tion of the particles in separated blocks are independent and the evolution

of each block is very simple to describe. Blocks with an even number of

particles, say with 2k particles, for some k ¥ Z, evolve to a configuration

with k particles in each lane, occupying alternating positions, with the

rightmost particle in lane 1, and therefore are equally distributed among

both lanes (see Figure 2). Blocks with an odd number of particles, say

2k+1, on the other hand, will evolve to a configuration with k+1 particles

on alternating positions on lane 1 and only k particles on the other lane.

Therefore each initial odd-sized block of particles leaves an extra particle

on lane 1, namely the left-most particle of this initial block. Since the prob-

ability that a block is odd-sized is positive, the theorem is proven. The

results for the stationary velocity and current immediately follow from the

structure of the limit measure determined by the block dispersion mecha-

nism that has been described above. L

To verify the explicit expression given in Remark 1 we note that by

translational invariance the density of ‘‘extra particles’’ on lane 2 is equal

to the probability that a given position, the origin say, is (initially) occupied

by the left-most particle belonging to an odd-sized block. If we call this

probability a, a simple computation using the product form of the initial

measure gives

a=
r(1−r)
1+r

.

The final densities (r±) on lane 1 and 2 resp. are then given by

r−=
r−a
2

and r+=
r+a
2

which yields the result presented in the remark.

Fig. 2. The figure presents the evolution of a block of size 4 under the TL184 dynamics.
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We now prove Proposition 1.

Proof of Proposition 1. When the initial measure is mr, 0 (or m0, r),

the statement follows directly from the block dispersion mechanism as

described in the proof of Theorem 2.

Suppose that the initial measure is mr, 1. Since the lower lane is full of

particles all the vacancies on the upper lane will be free to move

(backwards) and, by the same argument used in the proof of Theorem 1,

this property is preserved under the evolution. A tagged particle can only

change lanes if a vacancy also does. But a block of k \ 2 vacancies, initially

on lane 1 needs k−1 time steps to evolve into the configuration with

vacancies on both lanes, on alternating positions. Reaching this ‘‘final’’

configuration the vacancies will not change lanes anymore. Now, chose a

particle, (the first at the right of the origin, say), and let An be the event

that there is a block of vacancies n \ 0 positions to its right so large that it

cannot evolve into the final alternating vacancy configuration before its

leftmost vacancy reaches this particle. It is easy to check that

; P(An) <., and a simple Borel Cantelli argument shows that, with

probability 1, only a finite number of those large vacancy-blocks will be at

the right of the origin and hence the tagged particle changes lanes only a

finite number of times. By lane-exchange symmetry the same statement

follows for initial measure m1, r. L

It is obvious that all measures n184r1 ×n
184
r2

are invariant if the densities

are either both larger than 1/2 or both smaller than 1/2. This is clear (from
the description of nr given in the beginning of Section 3) once we note that

in n184r , with 0 < r< 1/2, all particles are free to move and therefore move

with mean velocity 1. If each lane starts according to one of these measures

their evolutions would be independent. The argument for the case when

both densities are larger than 1/2 is analogous by considering the

(backward) movement of vacancies. Hence such measures do not constitute

interesting initial measures for the investigation of lane-change phenomena.

On the other hand, we have the following result:

Proposition 2. If either r1 < 1/2 < r2 or r2 < 1/2 < r1, then

n184r1 ×n
184
r2

¥M184 is not invariant for TL184.

Proof. The idea of the proof is as follows. We first map the evolu-

tion of TL184, from n184r1 ×n
184
r2
, to that of an annihilating-particle system. In

this system particles moving in both directions in Z are initially placed

according to some translationally invariant measure. In this dynamics there

is no creation of annihilating-particles (a.p., for short) and when two a.p.
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moving in opposite directions meet, they annihilate each other. For

r1 < 1/2 < r2 or r2 < 1/2 < r1 we verify that the density of a.p. decrea-

ses with time and therefore n184r1 ×n
184
r2

is not invariant.

Each site i ¥ Z of the annihilating-particle system may be empty,

occupied by a single a.p. moving either to the left or to the right or occu-

pied by two a.p. both moving to the left or to the right. Let us denote by a

a configuration of this annihilating-particle system with a(i) ¥ {−2, −1,
0, 1, 2} so that a site with state a(i) indicates the presence there of |a(i)|
annihilating particles moving to the left if a(i) is negative or moving to the

right otherwise. The dynamics of this annihilating system proceeds in two

steps. At each time step: first each a.p. moves one position in its pre-

defined direction of movement; then any two particles moving in opposite

directions that find themselves in the same site, annihilate each other. Note

that since the distance of two a.p. moving in opposite directions can only

increase or decrease by 2 in each time step, annihilating particles on the

even and on the odd sub-lattices of Z do not interact with each other. The

mapping of G into the annihilating-particle system is defined as follows: if

gn is the state of the TL184 cellular automaton at time n then the corre-

sponding state, an, of the annihilating-particle system is given by an(i)=
2−g̃n(i), i ¥ Z, where g̃n(i)=gn(i, 1)+gn(i+1, 1)+gn(i, 2)+gn(i+1, 2), is

the total number of TL184-particles at the four sites on positions i and i+1
in configuration gn, as in the proof of Theorem 2. Indicating by ° , < ,

*, > and ± the states −2, −1, 0, 1 and 2, respectively, the graphical

representation (24) indicates part of a configuration for the two lane system

and the corresponding configuration of annihilating particles

· · ·

P p p P P p P P p P p p

* > * < > * ° < * * < ?

p P p P p p P P P p P p

· · · (24)

The state of the a.p. system corresponding to the last position to the right

can not be determined with the information available in the figure and

therefore is indicated by a question mark.

It is not difficult to find the evolution rules for the a.p. induced by

TL184 evolution rules. For i ¥ Z and n \ 1 we find an+1(i)=Y(an(i−1),
an(i+1)), where Y(a, b)=a−[a]−+[b]− and [a]−=|x| if x < 0, and

[a]−=0 otherwise.

Suppose r2 < 1/2 < r1. Under n184r1 ×n
184
r2

from M184 the upper lane

(lane 1) has blocks of successive sites occupied by particles separated by
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blocks of alternating occupied and empty sites while on the lower lane

there are blocks of successive empty sites that are separated by blocks of

alternating occupied and empty sites. Since n184r1 and n184r2 are independent the

corresponding annihilating particle system has, on both sub-lattices of Z,

positive density of particles moving in both directions. Since the distribu-

tion of a.p. is translationally invariant and annihilation necessarily

decreases the density of those particles during the evolution, the proposi-

tion follows. L

From Proposition 2 it is natural to ask what happens if a non-

invariant measure n184r1 ×n
184
r2

is taken as the initial measure. Starting with

this kind of measure corresponds to a two-step process where one first lets

two independent CA184 reach equilibrium from some initial state and only

then allows for lane change, i.e., one starts with DCA184 rules and then

connects the two lanes to evolve according to the dynamics of TL184. As

remarked before, a particularly interesting situation is when the original

measure was Bernoulli on each lane with two different densities. In this

case the first step of the evolution leads to a measure n184r1 ×n
184
r2

¥M184

which then plays the role of the initial measure for the second step, i.e.,

evolution under TL184. For an initial measure n184r1 ×n
184
r2

¥M184 with r1=0
and r2 > 1/2 we now show that both stationary densities are smaller than

1/2. This is somewhat contrary to intuition as one might believe that the

loss of particles should stop once a stationary state with density 1/2 is

reached on lane 2 (and hence the system as a whole would be stationary).

Theorem 3. Let n1840 ×n184r ¥M184 be the initial measure for TL184.

If r is neither 1/2 nor 1, then

+− — lim
nQ.

En1840 ×n184r [gn(i, 1)] < 1
2 and ++ — lim

nQ.
En1840 ×n184r [gn(i, 2)] < 1

2 .

This result also implies an interesting non-monotonicity formulated in

Corollary 3 and illustrated by Fig. 3. Since (trivially) the stationary density

++ on lane two is r for r [ 1/2 and since also ++=1/2 for r=1, but

strictly less than 1/2 for r ¥ (1/2, 1), the limiting density ++ is a non-mono-

tonic function of r.

Corollary 3. Let, as in Theorem 3, n1840 ×n184r ¥M184 be the initial

measure for TL184. Then the stationary density in the lane that starts

occupied is not monotonic with respect with the initial density.
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Fig. 3. The x-axis corresponds to r, the density of particles on lane two in the measure

n0×nr with nr ¥ I184
1 . The y-axis corresponds to ++, the long time limit of the particle density

on lane two in TL184 that starts from n0×nr. Qualitatively, the same relation of ++ to r holds

for n1840 ×n184r ¥M184.

The actual values of the limit densities are not difficult to compute in

some special cases. An interesting case is when the initial measure is n0×nr
with nr ¥ I184

1 where straightforward calculation yields limiting densities

++=
r2

3r−1
and +−=

r(2r−1)
3r−1

.

for r \ 1/2.

Proof of Theorem 3. In order to prove this result we first have to

describe the measure n1840 ×n184r . We only need to describe it on lane 2 where

it is a measure on {0, 1}Z corresponding to the limit measure for CA184

starting from the Bernoulli measure with density r> 1/2. This measure

does not allow for pairs of neighboring vacancies. The allowed configura-

tions consist of blocks of particles separated by blocks of alternating par-

ticles and vacancies. Thus in the initial measure for TL184 all particles are

free and remain free during the evolution. Each block of nearest neighbor

particles, initially in lane 2, will evolve, independently from each other, so

that the rightmost particle remains on lane 2. The particle initially to its left

goes to lane 1 and so on, forming an alternating particle/vacancy block.

Consider one of those initial blocks of particles with length k. To its left

and to its right there are blocks of alternating particles/vacancies. If k is

odd the leftmost particle of this k-sized block ends up in lane 2 and a larger
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Fig. 4. Particles are marked by P , vacancies are marked by p . The upper (resp., lower) line

shows the creation of a pair of consecutive particles separated by one (resp., two) vacant sites.

In both cases, the leftmost particle of the pair is the first particle of the leftmost block in the

initial configuration.

alternating particle/vacancy block is formed on this lane (as illustrated by

the upper line of Fig. 4). On the other hand, if k is even there will be a

‘‘gap’’ of two vacancies separating two alternating particle/vacancy blocks

(as illustrated by the lower line of Fig. 4).

Therefore the presence of even sized particle blocks in lane 2 in the

initial configuration leads to ‘‘extra vacancies’’ there, which result in a sta-

tionary density smaller than 1/2. It is simple to verify that those even sized

blocks occur with positive probability and therefore the theorem is

proven. L

4. REMARKS ON A CONTINUOUS TIME VERSION OF TL184

In the framework of a continuous-time description of two-lane traffic

flow one may describe the state of the system in terms of road-segment

occupation numbers t(i)=0, 1, 2 in a similar fashion as when passing from

TL184 to the restricted three-state process. Developing further the ideas set

out in the introduction we define a model on the basis of the following first

principles

P (A) exclusion in each lane.

P (B) totally asymmetric hopping with exponential waiting-time

distribution.

P (C) in each lane all cars behave identically, but there is a slow and a

fast lane.

P (D) cars move to the lower lane (lane 2) whenever possible.

Rule (D) is motivated by traffic regulations in Germany and other cou-

ntries which allow cars to use one lane (the ‘‘fast’’ lane) only for passing as

long as the slow lane can still accommodate vehicles. On a technical level,

the asymmetric lane-changing rule (D) is an ingredient which allows us to

uniquely identify a state of the three-state exclusion process with a con-

figuration on the two-lane road, viz. state ‘1’ refers to a car on the lower
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lane 2. We remark that an effective one-lane description of traffic flow with

passing is implicit also in other recent work ([IK1], [IK2]).

Notice that (C) is a generalization of our previous considerations

where cars moved on both lanes in an identical manner. On lane 2 each car

moves with constant rate a. On lane 1, which we define as passing lane,

cars move with rate c. This results in the following dynamics: (i) If a car is

on site k of lane 2, and the next site k+1 on lane 2 is empty, the car moves

onto this site with rate a. (ii) If the next site on lane 2 is occupied, but the

site on the passing lane 1 is vacant, the car on site k on lane 2 will pass, i.e.

will move to site k+1 on lane 1. This transition 11Q02 occurs with rate b

which is a free parameter. (iii) If there are cars on site k on both lanes, and

there is also a car on site k+1 of lane 2, then the car on lane 1 cannot

move back to lane 2. Instead it will hop onto site k+1 of lane 1 with rate c

which fixes the speed on the passing lane. (iv) Finally, when there are two

cars on site k, but site k+1 is empty on both lanes, then one of two things

can happen. Either the car on lane 2 proceeds (with rate a) and at the same

time the car on lane 1 moves to lane 2 (but remaining at site k), or the car

on lane 1 proceeds first onto site k+1 of lane 2 (with rate c). In terms of

occupation numbers, both transitions are indistinguishable, hence d=a+c
for the transition 20Q11. Thus the model is defined by the transitions

10Q01 with rate a

11Q02 with rate b

21Q12 with rate c

20Q11 with rate d=a+c.

(25)

The constraint on d resulting from the definition that cars on lane 2 (1)

move with rate a (c) has an intriguing consequence. It is straightforward to

show that the invariant measures contain a family of translationally

invariant product measures m where the stationary probabilities p1 of

finding one car on site k and p2 of finding both lanes occupied satisfy the

relation

bp21=(a+c) p2(1−p1−p2). (26)

We note that the individual lane densities are given by r1=p1+p2 and

r2=p2 respectively. Hence

r=p1+2p2. (27)
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ranging from 0 to 2 is the conserved total density which parameterizes the

family of measures m.

The fundamental quantity of interest is the stationary current

j=aO10P+bO11P+cO21P+dO20P where

OmnP=Em(t(i)=m, t(i+1)=n) (28)

for the stationary product measure m with density r. In what follows we set

a=1 which is a normalization of the time scale of the process and involves

no loss of generality. Since in the event of passing a car starts from lane 2

where cars move with rate a, we shall further assume b=a. Thus

j=p1(1−2p2)+(1+c) p2(1−p2) where we use d=1+c. With ref. 26, ref. 27

one can express j as a function of r to obtain the flow diagram of the two-

lane traffic model. Straightforward calculation yields

j=r−r2+1c+
1−c
2 25

1+c
3−c

+r−=1
1+c
3−c

+r2
2

−
4r2

3−c6 . (29)

The worst realistic case corresponds to c=a=1 where cars in the fast lane

move with the same average speed as in the slow lane. The flow-density

relation becomes

j=1+2r−r2−`1+2r−r2. (30)

For all densities r this current is larger than the maximal current attainable

in two single non-interacting lanes at the same total density. Numerical

studies of a similar two-lane traffic model with the same transitions as

those shown in (25), but without the constraint d=a+c, also yield current-

enhancement [Fo].
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Note Added 1. After the original submission of our paper we

became aware of Ref. [NT2] where TL184 is also suggested as a traffic

flow model.
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Note Added 2. Since we use results from [BF2] that has not yet

appeared in print, we shall indicate here the way these results have been

derived.

In [BF2], we consider a discrete-time process called Ballistic
Annihilation (abbreviated by BA). Its state space is {−1, 0, +1}Z. For

arbitrary z ¥ {−1, 0, +1}Z and x ¥ Z, let us interpret the values 0, +1, −1
of z(x) by saying that the site x is respectively, free of an A-particle, con-

tains an A-particle with velocity +1, and contains an A-particle with velo-

city −1 (‘‘A’’ stands for ‘‘annihilating’’, in order to distinguish A-particles

from the particles in CA184). In terms of A-particles, the dynamics of BA

is defined as follows: each A-particle moves along Z with its velocity, going

in the direction of −. (+.), if the velocity is negative (positive, resp.).

When meeting another A-particle both A-particles annihilate, i.e., they

disappear from the system forever (note that the meeting point may not be

an integer).

Let PBA
− (resp., PBA

+ ) denote the set of the extremal measures of the set

of the translation invariant measures on {−1, 0}Z (resp., on {0, +1}Z). We

show in [BF2] that a translation invariant measure m on {−1, 0, +1}Z is

invariant for BA if and only if it belongs to the convex hull of the set

PBA
− 2 PBA

+ . The ‘‘if’’ part is easy since it may be checked straightforwardly

that any element from the latter set is invariant for BA. The ‘‘only if’’ part

follows from the fact that a translation invariant measure m which is

invariant for BA, gives weight zero to any configuration z ¥ {−1, 0, +1}Z

that contains both A-particles with positive and A-particles with negative

velocity; it is not straightforward, but follows from a simple analysis of the

transformation of such z by the dynamics of BA. We also show in [BF2]

that starting from any translation invariant measure m, BA converges to

some m. from the convex hull of PBA
− 2 PBA

+ . This happens because only A-

particles with the same velocity may survive forever in BA that starts from

a configuration z from the support of such m (certainly, the velocity of the

surviving A-particles may depend on z).

Let us introduce the mapping T184, BA:{0, 1}ZQ {−1, 0, +1}Z by

(T184, BAg)(i)=1−g(i)−g(i+1), i ¥ Z (31)

It may be verified straightforwardly that if a process {gn}n ¥ N is CA184 then

the process {T184, BAgn}n ¥ N is BA ([BF1],[KS]). This relation and the pro-

perties of BA from the above paragraph imply that CA184, starting from

any translation invariant measure l, converges to some translation

invariant measure l. that may be represented as

l.=C
i
ail

.

i , where for each i, l.i =Tg
184, BA(mi) for some mi ¥ PBA

− 2 PBA
+

(32)
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Above, Tg
184, BA maps a particular subset of the measures on {−1, 0, +1}Z

to the set of the measures on {0, 1}Z; it is naturally induced by T184, BA.
Although T184, BA is not a bijection, Tg

184, BA is thoroughly characterized in

[BF2]. Note that the structure of n184r described and employed in Section 3,

follows from the convergence just stated, since n184r — l. for a Bernoulli

measure l with the particle density equal to r.

We now note that if l.=Tg
184, BA(m) for m ¥ PBA

+ then, due to (31), no

two particles in l. may occupy neighboring sites of Z, and thus, each par-

ticle will be always able to move in CA184, starting from l.. Thus,

JCA184(l.)=r(l.). A similar reasoning implies that JCA184(l.)=1−r(l.),
when m ¥ PBA

− .

Suppose now that a translation invariant measure l satisfies (8). Let

m :=(Tg
184, BA)

−1(l) (it may be shown that m is well defined). It then follows

from (8) and (31) that for any A-particle with negative velocity in m, there

exists, m-almost surely, an A-particle with positive velocity that will

annihilate it sooner or later in BA, starting from m. Using the relation of

CA184 to BA induced by (31), we conclude then, that there is no A-particle

with negative velocity in any mi from the expansion (32) for l., the asymp-

totic measure of CA184, starting from l. Thus, JCA184
t=. (l) — JCA184(l.)=

;i air(l.i )=r(l.). But since CA184 does not change the particle density

of l, then JCA184
t=. (l)=r(l). A similar consideration gives that JCA184

t=. (l)=
1−r(l), when l satisfies (9). The general property expressed by (7), (8), (9),

(10) follows by the same consideration, when we ‘‘split’’ l in two parts, one

that satisfies (8), and the other that satisfies (9).
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